A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants
نویسندگان
چکیده
A solar chimney power plant consists of four main parts, a solar collector, a chimney, an energy storage layer, and a wind turbine. So far, several investigations on the performance of the solar chimney power plant have been conducted. Among them, different approaches have been applied to model the turbine inside the system. In particular, a real wind turbine coupled to the system was simulated using computational fluid dynamics (CFD) in three investigations. Gholamalizadeh et al. simulated a wind turbine with the same blade profile as the Manzanares SCPP’s turbine (FX W-151-A blade profile), while a CLARK Y blade profile was modelled by Guo et al. and Ming et al. In this study, simulations of the Manzanares prototype were carried out using the CFD model developed by Gholamalizadeh et al. Then, results obtained by modelling different turbine blade profiles at different turbine rotational speeds were compared. The results showed that a turbine with the CLARK Y blade profile significantly overestimates the value of the pressure drop across the Manzanares prototype turbine as compared to the FX W-151-A blade profile. In addition, modelling of both blade profiles led to very similar trends in changes in turbine efficiency and power output with respect to rotational speed.
منابع مشابه
Evaluation of solar-chimney power plants with multiple-angle collectors
Solar chimney power plants are plants based on solar thermal power including three parts of collector, chimney and turbine, which is able to produce electrical energy. One of the effective parameters in increasing the power production is the collector angles versus horizon. In the present study, a numerical analysis of a solar chimney power plant for different angles of the collector (divergent...
متن کاملNumerical simulation of a solar chimney power plant in the southern region of Iran
Three-dimensional numerical simulations are performed to investigate the effects of pressure drop across the turbine and solar radiance on the performance of a solar chimney power plant (SCPP). The SCPP system expected to provide electric power to a city is located in southern region of Iran (city of Lamerd, Fars province). Its dimensions are similar to the Manzanares prototype (built in Spain,...
متن کاملComputational fluid dynamics analysis and geometric optimization of solar chimney power plants by using of genetic algorithm
In this paper, a multi-objective optimization method is implemented by using of genetic algorithm techniques in order to determine optimum configuration of solar chimney power plant. The objective function which is simultaneously considered in the analysis is output power of the plant. Output power of the system is maximized. Design parameters of the considered plant include collector radius (R...
متن کاملMeasuring Velocity Changes along a Solar Chimney
The increasing consumption of energy from fossil fuels on the one hand and the pollution created by it on the other hand has always raised the concern of replacing clean and renewable energy with fossil fuels in the human mind. Generating electricity through clean energy can be a good solution to reduce pollutants and prevent global warming. One of the most available types of renewable energy i...
متن کاملEconomic (Cost-Benefit) Analysis of Power Generation from Commercial Reinforced Concrete Solar Chimney Power Plant Built in the Desert Regions of Iran
This paper expands a model different from existing models to analyze the cost and benefit of areinforced concrete solar chimney power plant (RCSCPP) built in the desert regions of Iran.Based on the model and some assumptions for values of parameters, this paper calculates totalnet present value (TNPV) and the minimum electricity price in each phase by dividing the wholeservice period into four ...
متن کامل